Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

You-Quan Zhu, ${ }^{\text {a }}$ Hai-Bin Song, ${ }^{\text {a }}$ Jian-Rong Li, ${ }^{\text {b }}$ Chang-Sheng
Yao, ${ }^{\text {a }}$ Fang-Zhong Hu, ${ }^{\text {a }}$ Xiao-Mao
Zou ${ }^{\text {a }}$ and Hua-Zheng Yang ${ }^{\text {a* }}$
${ }^{\text {a State Key Laboratory and Institute of Elemento- }}$ Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China, and
${ }^{\text {b }}$ Department of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail:
youquan_zhu@mail.nankai.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.059$
$w R$ factor $=0.131$
Data-to-parameter ratio $=9.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1-Benzyl-3-(α-hydroxybenzylidene)-pyrrolidine-2,4-dione

The title compound, $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{3}$, is a potent new herbicide containing the pyrrolidine-2,4-dione ring system. In the crystalline state, the molecular skeleton contains one enol hydrogen-bonded moiety, formed from benzoyl $\mathrm{C}=\mathrm{O}$ isomerization.

Comment

Many compounds containing the 3-acylpyrrolidine-2,4-dione moiety are novel heterocyclic compounds with antibiotic activity, such as tenuazonic (Sticking, 1959), streptolydigin (Rinehart et al., 1963), tirandamycin (Mackellar et al., 1971), malonomycin (Bann et al., 1978), α-cyclopiazonic acid (Sticking, 1959) and β-cyclopiazonic acid (Holzapfel et al., 1970). All these compounds possess a 3-acyltetramic acid moiety as a tricarbonylmethane structure and their hydrogen chemical shift of the enol hydroxy is about 11 p.p.m. (Wu et al., 2002). On the other hand, most of the excellent inhibitors of p-hydroxyphenylpyruvate dioxygenase also possess similar characteristics, which are crucial for their two kinds of bioactivity (Zhu et al., 2004). Up to now, we have synthesized a series of 3-(un)substituted benzoyl-1-benzylpyrrolidine-2,4dione compounds and some of them have high herbicidal activity. The structure reported here, ($\mathrm{I} b$), helps us to investigate the relationship between structure and herbicidal activity. To the best of our knowledge, this is the first reported crystal structure determination of a molecule with a 3-benzoylpyrrolidine-2,4-dione ring system.

(1 a)

(Ib)

The molecular structure of ($\mathrm{I} b$) is shown in Fig. 1. The analysis of crystals grown from a solution of 3-benzoyl-1-benzylpyrrolidine-2,4-dione, ($\mathrm{I} a$), showed that we had obtained crystals of the related tautomeric form 1-benzyl-3(α-hydroxybenzylidene) pyrrolidine-2,4-dione, (Ib). Atom H1,

Figure 1
View of the title compound, drawn with 40% probability ellipsoids.

Received 11 November 2003
Accepted 6 January 2004 Online 17 January 2004

Figure 2
Packing diagram showing the intra- and intermolecular hydrogen bonds.
involved in intramolecular hydrogen bonding between O 1 and O 2 , was assigned to O 1 rather than to O 2 , based on bond lengths. The $\mathrm{C} 9-\mathrm{O} 2$ distance is 1.268 (4) \AA, which is longer than the normal carbonyl bond length ($\mathrm{C} 11-\mathrm{O} 3$) of 1.219 (5) \AA. In contrast, the $\mathrm{C} 1-\mathrm{O} 1$ distance $[1.326$ (4) \AA] is intermediate between the normal carbonyl bond and the $\mathrm{C}-$ O single bond length (Ibers \& Hamilton, 1974). A similar situation has been found in 3-(1-hydroxyethylidene)-1-phenylpyrrolidine-2,4-dione, which contains the same pyrrolidine skeleton (Ellis \& Spek, 2001). In addition, the X-ray data also indicates a weak hydrogen-bonding interaction between two adjacent molecules (see Fig. 2), with an $\mathrm{O} \cdots \mathrm{C}$ distance of 3.109 (6) \AA.

Experimental

The title compound was obtained according to the similar reported procedure of Matsuo et al. (1980). Colorless single crystals were obtained by recrystallization of 3-benzoyl-1-benzylpyrrolidine-2,4dione from petroleum ether and ethyl acetate.

Crystal data

```
C}\mp@subsup{\textrm{C}}{8}{}\mp@subsup{\textrm{H}}{15}{}\mp@subsup{\textrm{NO}}{3}{
Mr}=293.3
Orthorhombic, P2 2 2 2 2 
a=5.569 (3) \AA
b=15.062 (7) \AA
c=18.245 (9) \AA
V=1530.3(12) \AA}\mp@subsup{}{}{3
Z=4
Dx}=1.273\mp@subsup{\textrm{Mg m}}{}{-3
```

> Mo $K \alpha$ radiation Cell parameters from 765 \quad reflections $\theta=2.6-19.6^{\circ}$ $\begin{aligned} & \mu=0.09 \mathrm{~mm}^{-1} \\ & T=293(2) \mathrm{K} \\ & \text { Prism, colourless } \\ & 0.20 \times 0.18 \times 0.16 \mathrm{~mm}\end{aligned}$

Data collection

Bruker SMART CCD area-detector
\quad diffractometer
φ and ω scans
Absorption correction: none
8033 measured reflections
1830 independent reflections

[^0]
Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.131$
$S=1.07$
1830 reflections
200 parameters

$$
\begin{aligned}
& \text { H-atom parameters constrained } \\
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0612 P)^{2}\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e}^{\circ} \AA^{-3} \\
& \Delta \rho_{\min }=-0.12 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 9$	$1.345(4)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.388(5)$
$\mathrm{N} 1-\mathrm{C} 10$	$1.454(5)$	$\mathrm{C} 2-\mathrm{C} 7$	$1.392(6)$
$\mathrm{N} 1-\mathrm{C} 12$	$1.475(4)$	$\mathrm{C} 8-\mathrm{C} 11$	$1.469(5)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.326(4)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.479(5)$
$\mathrm{O} 2-\mathrm{C} 9$	$1.268(4)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.535(5)$
$\mathrm{O} 3-\mathrm{C} 11$	$1.219(5)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.514(6)$
$\mathrm{C} 1-\mathrm{C} 8$	$1.399(5)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.379(6)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.487(5)$		
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 10$	$111.9(3)$	$\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 9$	$118.5(3)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 12$	$124.7(3)$	$\mathrm{C} 11-\mathrm{C} 8-\mathrm{C} 9$	$105.8(3)$
$\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 12$	$122.2(3)$	$\mathrm{O} 2-\mathrm{C} 9-\mathrm{N} 1$	$124.1(4)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{H} 1$	109.5	$\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 8$	$125.0(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 8$	$118.0(3)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 8$	$110.8(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$112.2(3)$	$\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 11$	$104.4(3)$
$\mathrm{C} 8-\mathrm{C} 1-\mathrm{C} 2$	$129.8(4)$	$\mathrm{N} 1-\mathrm{C} 10-\mathrm{H} 104$	110.9
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$	$117.3(4)$	$\mathrm{O} 3-\mathrm{C} 11-\mathrm{C} 8$	$131.3(4)$
$\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 11$	$135.5(4)$	$\mathrm{O} 3-\mathrm{C} 11-\mathrm{C} 10$	$121.8(4)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$8.6(5)$	$\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 2$	$1.2(5)$
$\mathrm{C} 8-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-169.4(4)$	$\mathrm{C} 11-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 2$	$177.0(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$-169.8(4)$	$\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{N} 1$	$-177.9(3)$
$\mathrm{C} 8-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$12.1(6)$	$\mathrm{C} 11-\mathrm{C} 8-\mathrm{C} 9-\mathrm{N} 1$	$-2.1(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$179.7(4)$	$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 13$	$129.4(4)$
$\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 9-\mathrm{O} 2$	$-178.4(3)$	$\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 13$	$-63.9(4)$
$\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 9-\mathrm{O} 2$	$-10.5(5)$	$\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$-60.2(5)$
$\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 8$	$0.6(4)$	$\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 18$	$118.9(4)$
$\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 8$	$168.5(3)$		

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C10-H10B $\cdots \mathrm{O}^{\mathrm{i}}$	0.97	2.46	$3.019(5)$	116
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$	0.82	1.74	$2.507(4)$	155
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 1$	0.93	2.32	$2.669(6)$	102
C7-H7 3 O3	0.93	2.14	$2.969(6)$	148
C12-H12A \cdots O2	0.97	2.52	$2.908(5)$	104

Symmetry code: (i) $x-\frac{1}{2}, \frac{3}{2}-y, 1-z$.
All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.97 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$, and included in the final cycles of refinement using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}(\mathrm{O})$. Friedel pairs were not merged.

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (No. 20172031) and the Doctor's Special Foundation of High Education Ministry.

References

Baan, J. L. van der, Barnick, J. W. F. K. \& Bickelhaupt, F. (1978). Tetrahedron, 34, 223-231.
Bruker (1999). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Ellis, D. D. \& Spek, A. L. (2001). Acta Cryst. C57, 433-434.
Holzapfel, C. W., Hutchison, R. D. \& Wilkins, D. C. (1970). Tetrahedron, 26, 5239-5246.
Ibers, J. A. \& Hamilton, W. C. (1974). Editors. International Tables for X-ray Crystallography, Vol. 4. Birmingham: Kynoch Press.

Mackellar, F. A., Grostic, M. F., Olson, E. C., Wnuk, R. J., Branfman, A. R. \& Rinehart, Jr. K. L. (1971). J. Am. Chem. Soc. 93, 4943-4945.
Matsuo, K., Kitaguchi, I., Takata, Y. \& Tanaka, K.(1980). Chem. Pharm. Bull. 28, 2494-2502.
Rinehart, K. L., Beck, J. R., Borders, D. B., Kinstle, T. H. \& Krauss, D. (1963). J. Am. Chem. Soc. 85, 4038-4039.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sticking, C. E. (1959). Biochem. J. 72, 332-334.
Wu, C.-S., Huang, J.-L.,Sun Y.-S. \& Yang, D.-Y.(2002). J. Med. Chem. 45, 22222228.

Zhu, Y.-Q., Hu, F.-Z. \& Yang H.-Z. (2004). Hиaxue Tongbao. In the press. (In Chinese.)

[^0]: 1101 reflections with $I>2 \sigma(I)$
 $R_{\text {int }}=0.060$
 $\theta_{\text {max }}=26.4^{\circ}$
 $h=-6 \rightarrow 5$
 $k=-14 \rightarrow 18$
 $l=-22 \rightarrow 21$

